The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community
نویسندگان
چکیده
The amount of data being generated in the nanotechnology research space is significant, and the coordination, sharing, and downstream analysis of the data is complex and consistently deliberated. The complexities of the data are due in large part to the inherently complicated characteristics of nanomaterials. Also, testing protocols and assays used for nanomaterials are diverse and lacking standardization. The Nanomaterial Registry has been developed to address such challenges as the need for standard methods, data formatting, and controlled vocabularies for data sharing. The Registry is an authoritative, web-based tool whose purpose is to simplify the community's level of effort in assessing nanomaterial data from environmental and biological interaction studies. Because the Registry is meant to be an authoritative resource, all data-driven content is systematically archived and reviewed by subject-matter experts. To support and advance nanomaterial research, a set of minimal information about nanomaterials (MIAN) has been developed and is foundational to the Registry data model. The MIAN has been used to create evaluation and similarity criteria for nanomaterials that are curated into the Registry. The Registry is a publicly available resource that is being built through collaborations with many stakeholder groups in the nanotechnology community, including industry, regulatory, government, and academia. Features of the Registry website (http://www.nanomaterialregistry.org) currently include search, browse, side-by-side comparison of nanomaterials, compliance ratings based on the quality and quantity of data, and the ability to search for similar nanomaterials within the Registry. This paper is a modification and extension of a proceedings paper for the Institute of Electrical and Electronics Engineers.
منابع مشابه
New Hybrid Nanomaterial Derived from Immobilization of 4-Formyl Benzo-9-Crown-3 Ether onto the Mesopores of MCM-41
In this work, we report a new hybrid nanomaterial based on the immobilization of 4-formyl benzo-9-crown-3 ether (FB9C3) onto the mesopores of MCM-41. First, the mesoporous molecular sieve MCM-41 was covalently grafted with 3-aminopropyl triethoxysilane to give aminopropyl modified MCM-41 (AmpMCM-41). Reaction of this material with FB9C3 afforded the B9C3-AmpMCM-41 hybrid nanomaterial. The prepa...
متن کاملNew hybrid nanomaterial derived from immobilization of a molybdenum complex on the surface of multi-walled carbon nanotubes
In this work, we report a new well dispersed molybdenum complex attached through the mediation of aminopropylsilyl groups on the surface of multi-walled carbon nanotubes (MWCNTs). The prepared hybrid nanomaterial was characterized with different physicochemical methods such as Fourier transform infrared and atomic absorption spectroscopies, transmission electron microscopy, energy-dispersive X-...
متن کاملHybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles
In this work, a new hybrid organometallic-inorganic hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the surface of magnetite nanoparticles. Covalent grafting of silica coated magnetite nanoparticles (SCMNPs) with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs). Then, Schiff base condensation of AmpSCMNPs with acet...
متن کاملISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format
BACKGROUND AND MOTIVATION The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of...
متن کاملNi2As2O7 pyrochlore nanomaterial: Solid state synthesis, crystal structure determination, crystal phase growth study and physical properties
Nanostructured Ni2As2O7 semiconductor samples were synthesized by a solid state method among As2O3 and Ni(NO3)2.6H2O raw materials at 650 °C (S1) and 750 °C (S2) as reaction temperatures. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique and F...
متن کامل